Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0297551, 2024.
Article in English | MEDLINE | ID: mdl-38593145

ABSTRACT

Arrhythmia is a life-threatening cardiac condition characterized by irregular heart rhythm. Early and accurate detection is crucial for effective treatment. However, single-lead electrocardiogram (ECG) methods have limited sensitivity and specificity. This study propose an improved ensemble learning approach for arrhythmia detection using multi-lead ECG data. Proposed method, based on a boosting algorithm, namely Fine Tuned Boosting (FTBO) model detects multiple arrhythmia classes. For the feature extraction, introduce a new technique that utilizes a sliding window with a window size of 5 R-peaks. This study compared it with other models, including bagging and stacking, and assessed the impact of parameter tuning. Rigorous experiments on the MIT-BIH arrhythmia database focused on Premature Ventricular Contraction (PVC), Atrial Premature Contraction (PAC), and Atrial Fibrillation (AF) have been performed. The results showed that the proposed method achieved high sensitivity, specificity, and accuracy for all three classes of arrhythmia. It accurately detected Atrial Fibrillation (AF) with 100% sensitivity and specificity. For Premature Ventricular Contraction (PVC) detection, it achieved 99% sensitivity and specificity in both leads. Similarly, for Atrial Premature Contraction (PAC) detection, proposed method achieved almost 96% sensitivity and specificity in both leads. The proposed method shows great potential for early arrhythmia detection using multi-lead ECG data.


Subject(s)
Atrial Fibrillation , Atrial Premature Complexes , Ventricular Premature Complexes , Humans , Atrial Fibrillation/diagnosis , Ventricular Premature Complexes/diagnosis , Electrocardiography/methods , Algorithms , Atrial Premature Complexes/diagnosis , Machine Learning
2.
BMC Bioinformatics ; 24(1): 365, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759158

ABSTRACT

Echocardiographic interpretation during the prenatal or postnatal period is important for diagnosing cardiac septal abnormalities. However, manual interpretation can be time consuming and subject to human error. Automatic segmentation of echocardiogram can support cardiologists in making an initial interpretation. However, such a process does not always provide straightforward information to make a complete interpretation. The segmentation process only identifies the region of cardiac septal abnormality, whereas complete interpretation should determine based on the position of defect. In this study, we proposed a stacked residual-dense network model to segment the entire region of cardiac and classifying their defect positions to generate automatic echocardiographic interpretation. We proposed the generalization model with incorporated two modalities: prenatal and postnatal echocardiography. To further evaluate the effectiveness of our model, its performance was verified by five cardiologists. We develop a pipeline process using 1345 echocardiograms for training data and 181 echocardiograms for unseen data from prospective patients acquired during standard clinical practice at Muhammad Hoesin General Hospital in Indonesia. As a result, the proposed model produced of 58.17% intersection over union (IoU), 75.75% dice similarity coefficient (DSC), and 76.36% mean average precision (mAP) for the validation data. Using unseen data, we achieved 42.39% IoU, 55.72% DSC, and 51.04% mAP. Further, the classification of defect positions using unseen data had approximately 92.27% accuracy, 94.33% specificity, and 92.05% sensitivity. Finally, our proposed model is validated with human expert with varying Kappa value. On average, these results hold promise of increasing suitability in clinical practice as a supporting diagnostic tool for establishing the diagnosis.


Subject(s)
Echocardiography , Heart , Female , Pregnancy , Humans , Prospective Studies
3.
PLoS One ; 15(5): e0231635, 2020.
Article in English | MEDLINE | ID: mdl-32407335

ABSTRACT

Spontaneous prediction of malignant ventricular arrhythmia (MVA) is useful to avoid delay in rescue operations. Recently, researchers have developed several algorithms to predict MVA using various features derived from electrocardiogram (ECG). However, there are several unresolved issues regarding MVA prediction such as the effect of number of ECG features on a prediction remaining unclear, possibility that an alert for occurring MVA may arrive very late and uncertainty in the performance of the algorithm predicting MVA minutes before onset. To overcome the aforementioned problems, this research conducts an in-depth study on the number and types of ECG features that are implemented in a decision tree classifier. In addition, this research also investigates an algorithm's execution time before the occurrence of MVA to minimize delays in warnings for MVA. Lastly, this research aims to study both the sensitivity and specificity of an algorithm to reveal the performance of MVA prediction algorithms from time to time. To strengthen the results of analysis, several classifiers such as support vector machine and naive Bayes are also examined for the purpose of comparison study. There are three phases required to achieve the objectives. The first phase is literature review on existing relevant studies. The second phase deals with design and development of four modules for predicting MVA. Rigorous experiments are performed in the feature selection and classification modules. The results show that eight ECG features with decision tree classifier achieved good prediction performance in terms of execution time and sensitivity. In addition, the results show that the highest percentage for sensitivity and specificity is 95% and 90% respectively, in the fourth 5-minute interval (15.1 minutes-20 minutes) that preceded the onset of an arrhythmia event. Such results imply that the fourth 5-minute interval would be the best time to perform prediction.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Electrocardiography/methods , Adult , Bayes Theorem , Decision Trees , Humans , Male , Middle Aged , Sensitivity and Specificity , Young Adult
4.
J Med Biol Eng ; 37(4): 441-453, 2017.
Article in English | MEDLINE | ID: mdl-28867990

ABSTRACT

Many studies showed electrocardiogram (ECG) parameters are useful for predicting fatal ventricular arrhythmias (VAs). However, the studies have several shortcomings. Firstly, all studies lack of effective way to present behavior of various ECG parameters prior to the occurrence of the VAs. Secondly, they also lack of discussion on how to consider the parameters as abnormal. Thirdly, the reports do not include approaches to increase the detection accuracy for the abnormal patterns. The purpose of this study is to address the aforementioned issues. It identifies ten ECG parameters from various sources and then presents a review based on the identified parameters. From the review, it has been found that the increased risk of VAs can be represented by presence and certain abnormal range of the parameters. The variation of parameters range could be influenced by either gender or age. This study also has discovered the facts that averaging, outliers elimination and morphology detection algorithms can contribute to the detection accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...